Copper concentration in erythrocytes, platelets, plasma, serum and urine: influence of physical training

  • 1.

    Heffernan S, Horner K, De Vito G, Conway G, Heffernan SM, Horner K, et al. The role of mineral and trace element supplementation in exercise and athletic performance: a systematic review. Nutrients. 2019;11(3):696. https://doi.org/10.3390/nu11030696.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 2.

    Speich M, Pineau A, Ballereau F. Minerals, trace elements and related biological variables in athletes and during physical activity. Clin Chim Acta. 2001;312(1-2):1–11. https://doi.org/10.1016/S0009-8981(01)00598-8.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Williams MH. Dietary supplements and sports performance: minerals. J Int Soc Sports Nutr. 2005;2(1):43. https://doi.org/10.1186/1550-2783-2-1-43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Prashanth L, Kattapagari K, Chitturi R, Baddam VR, Prasad L. A review on role of essential trace elements in health and disease. J Dr NTR Univ Heal Sci. 2015;4:75.

    Article 

    Google Scholar
     

  • 5.

    Wolinsky I, Driskell JA. Sports nutrition: vitamins and trace elements: CRC Press; 2005.


    Google Scholar
     

  • 6.

    Bost M, Houdart S, Oberli M, Kalonji E, Huneau J-F, Margaritis I. Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol. 2016;35:107–15. https://doi.org/10.1016/j.jtemb.2016.02.006.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 7.

    Tapiero H, DáM T, Tew KD. Trace elements in human physiology and pathology copper. Biomed Pharmacother. 2003;57(9):386–98. https://doi.org/10.1016/s0753-3322(03)00012-x.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Hordyjewska A, Popiołek Ł, Kocot J. The many “faces” of copper in medicine and treatment. Biometals. 2014;27(4):611–21. https://doi.org/10.1007/s10534-014-9736-5.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Collins JF. Copper: Basic Physiological and Nutritional Aspects. In: Collins JF, editor. Mol Genet Nutr Asp Major Trace Miner. Cambridge: Academic Press; 2016. p. 69–83.

  • 10.

    Prohaska JR. Impact of copper limitation on expression and function of multicopper oxidases (ferroxidases). Adv Nutr. 2011;2(2):89–95. https://doi.org/10.3945/an.110.000208.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Baker ZN, Cobine PA, Leary SC. The mitochondrion: a central architect of copper homeostasis. Metallomics. 2017;9(11):1501–12. https://doi.org/10.1039/C7MT00221A.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Johnson MA, Fischer JG, Kays SE. Is copper an antioxidant nutrient? Crit Rev Food Sci Nutr. 1992;32(1):1–31. https://doi.org/10.1080/10408399209527578.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Lightfoot DJ, McGrann GR, Able AJ. The role of a cytosolic superoxide dismutase in barley-pathogen interactions. Mol Plant Pathol. 2017;18(3):323–35. https://doi.org/10.1111/mpp.12399.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr. 2002;22(1):439–58. https://doi.org/10.1146/annurev.nutr.22.012502.114457.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Vashchenko G, MacGillivray RT. Multi-copper oxidases and human iron metabolism. Nutrients. 2013;5(7):2289–313. https://doi.org/10.3390/nu5072289.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Shils ME, Shike M, Catharine Ross A, Caballero B, Cousins RJ. Modern nutrition in health and disease. Shils ME, Shike M, Catharine Ross A, Caballero B, Cousins RJ, editors. Philadelphia: Lippincott Williams and Wilkins; 2006.

  • 17.

    Solano F. On the metal cofactor in the tyrosinase family. Int J Mol Sci. 2018;19(2). https://doi.org/10.3390/ijms19020633.

  • 18.

    Maynar-Mariño M, Grijota FJ, Bartolomé I, Siquier-Coll J, Román VT, Muñoz D. Influence of physical training on erythrocyte concentrations of iron, phosphorus and magnesium. J Int Soc Sports Nutr. 2020;17:1–7.

    Article 

    Google Scholar
     

  • 19.

    Rodriguez Tuya I, Pinilla Gil E, Maynar Mariño M, García-Moncó Carra RM, Sánchez MA. Evaluation of the influence of physical activity on the plasma concentrations of several trace metals. Eur J Appl Physiol Occup Physiol. 1996;73(3-4):299–303. https://doi.org/10.1007/BF02425490.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Maynar M, Bartolomé I, Alves J, Barrientos G, Grijota FJ, Robles MC, et al. Influence of a 6-month physical training program on serum and urinary concentrations of trace metals in middle distance elite runners. J Int Soc Sports Nutr. 2019;16(1):53. https://doi.org/10.1186/s12970-019-0322-7.

  • 21.

    Muñoz D, Maynar M, Barrientos G, Siquier-Coll J, Bartolomé I, Grijota FJ, et al. Effect of an acute exercise until exhaustion on the serum and urinary concentrations of cobalt, copper, and manganese among well-trained athletes. Biol Trace Elem Res. 2019;189(2):387–94. https://doi.org/10.1007/s12011-018-1500-1.

  • 22.

    Maynar M, Llerena F, Bartolomé I, Alves J, Robles M-C, Grijota F-J, et al. Seric concentrations of copper, chromium, manganesum, nickel and selenium in aerobic, anaerobic and mixed professional sportsmen. J Int Soc Sports Nutr. 2018;15(1):8. https://doi.org/10.1186/s12970-018-0212-4.

  • 23.

    Maynar M, Grijota FJ, Siquier-Coll J, Bartolome I, Robles MC, Muñoz D. Erythrocyte concentrations of chromium, copper, manganese, molybdenum, selenium and zinc in subjects with different physical training levels. J Int Soc Sports Nutr. 2020;17:1–9.

    Article 

    Google Scholar
     

  • 24.

    Siquier-Coll J, Bartolomé I, Perez-Quintero M, Grijota FJ, Arroyo J, Muñoz D, et al. Serum, erythrocyte and urinary concentrations of iron, copper, selenium and zinc do not change during an incremental test to exhaustion in either normothermic or hyperthermic conditions. J Therm Biol. 2019;86:102425.

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Piomelli S, Seaman C. Mechanism of red blood cell aging: relationship of cell density and cell age. Am J Hematol Wiley Online Library. 1993;42(1):46–52. https://doi.org/10.1002/ajh.2830420110.

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Harker LA. The kinetics of platelet production and destruction in man. Clin Haematol. 1977;6(3):671–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Porta J, Galiano D, Tejedo A, González JM. Valoración de la composición corporal. Utopías y realidades. In: Esparza Ros F (Ed). Manual de Cineantropometría. Madrid; Grupo Español de Cineantropometría; 1993. p. 113–170.

  • 28.

    Stewart A, Marfell-Jones M, Olds T, Ridder de H. International Society for the Advancement of Kinantropometry. In: Int Stand Anthr Assessment Aust Low Hutt, New Zeal Int Soc Adv Kinanthropometry; 2001.


    Google Scholar
     

  • 29.

    Moreiras O, Carbajal A, Cabrera L, Cuadrado C. Tablas de composición de alimentos: guía de prácticas. Madrid: Pirámide; 2016.


    Google Scholar
     

  • 30.

    Hagströmer M, Oja P, Sjöström M. The international physical activity questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr Cambridge University Press. 2006;9(6):755–62. https://doi.org/10.1079/PHN2005898.

    Article 

    Google Scholar
     

  • 31.

    Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95. https://doi.org/10.1249/01.MSS.0000078924.61453.FB.

    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Aibar A, García González L, Abarca Sos A, Murillo B, Zaragoza J. Testing the validity of the international physical activity questionnaire in early spanish adolescent: a modified protocol for data collection. Sport TK Rev Euroam Ciencias Deport. 2016;5(2):123–32.

  • 33.

    Tomczak M, Tomczak E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014;1:19–25.


    Google Scholar
     

  • 34.

    Cohen J. Statistical power analysis for the behavioral sciences. New York: Routledge Academic; 1988.


    Google Scholar
     

  • 35.

    Lu Y, Ahmed S, Harari F, Vahter M. Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma. J Trace Elem Med Biol. 2015;29:249–54. https://doi.org/10.1016/j.jtemb.2014.08.012.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Catalani S, Marini M, Consolandi O, Gilberti ME, Apostoli P. Potenzialità ed utilità del dosaggio di elementi metallici nelle piastrine. G Ital Med Lav Erg. 2008;30:115–8.

    CAS 

    Google Scholar
     

  • 37.

    Heitland P, Köster HD. Human biomonitoring of 73 elements in blood, serum, erythrocytes and urine. J Trace Elem Med Biol. 2021;64:126706. https://doi.org/10.1016/j.jtemb.2020.126706.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    San-Millán I, Brooks GA. Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals. Sport Med. 2018;48(2):467–79. https://doi.org/10.1007/s40279-017-0751-x.

    Article 

    Google Scholar
     

  • 39.

    Lukaski HC, Siders WA, Hoverson BS, Gallagher SK. Iron, copper, magnesium and zinc status as predictors of swimming performance. Int J Sports Med. 1996;17(07):535–40. https://doi.org/10.1055/s-2007-972891.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 40.

    Kabata-Pendias A, Mukherjee AB. Trace elements from soil to human; 2007. https://doi.org/10.1007/978-3-540-32714-1.


    Google Scholar
     

  • 41.

    Calleja CA, Hurtado MMC, Daschner Á, Escámez PF, Abuín CMF, Pons RMG, et al. Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre Ingestas Nutricionales de Referencia para la población española: Rev del Com Científico la AESAN. Agencia Española de Seguridad Alimentaria y Nutrición; 2019. p. 43–68.


    Google Scholar
     

  • 42.

    Lukaski HC, Bolonchuk WW, Klevay LM, Milne DB, Sandstead HH. Maximal oxygen consumption as related to magnesium, copper, and zinc nutriture. Am J Clin Nutr. 1983;37(3):407–15. https://doi.org/10.1093/ajcn/37.3.407.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Gropper SS, Sorrels LM, Blessing D. Copper status of collegiate female athletes involved in different sports. Int J Sport Nutr Exerc Metab. 2003;13(3):343–57. https://doi.org/10.1123/ijsnem.13.3.343.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Nuviala RJ, Lapieza MG, Bernal E. Magnesium, zinc, and copper status in women involved in different sports. Int J Sport Nutr. 1999;9(3):295–309. https://doi.org/10.1123/ijsn.9.3.295.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Dressendorfer RH, Sockolov R. Hypozincemia in runners. Phys Sportsmed. 1980;8(4):97–100. https://doi.org/10.1080/00913847.1980.11710918.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 46.

    Metin G, Atukeren P, Alturfan AA, Gulyasar T, Kaya M, Gumustas MK. Lipid peroxidation, erythrocyte superoxide-dismutase activity and trace metals in young male footballers. Yonsei Med J. 2003;44(6):979–86. https://doi.org/10.3349/ymj.2003.44.6.979.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 47.

    Rakhra G, Masih D, Vats A, Verma SK, Singh VK, Rana RT, et al. Effect of physical activity and age on plasma copper, zinc, iron, and magnesium concentration in physically active healthy males. Nutrition. 2017;43–44:75–82.

    Article 

    Google Scholar
     

  • 48.

    Lukaski HC, Hoverson BS, Gallagher SK, Bolonchuk WW. Physical training and copper, iron, and zinc status of swimmers. Am J Clin Nutr. 1990;51(6):1093–9. https://doi.org/10.1093/ajcn/51.6.1093.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 49.

    Koury JC, de Olilveria AV Jr, Portella ES, de Olilveria CF, Lopes GC, Donangelo CM. Zinc and copper biochemical indices of antioxidant status in elite athletes of different modalities. Int J Sport Nutr Exerc Metab. 2004;14(3):358–72. https://doi.org/10.1123/ijsnem.14.3.358.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 50.

    Kikukawa A, Kobayashi A. Changes in urinary zinc and copper with strenuous physical exercise. Aviat Space Environ Med. 2002;73:991–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Aruoma OI, Reilly T, MacLaren D, Halliwell B. Iron, copper and zinc concentrations in human sweat and plasma; the effect of exercise. Clin Chim Acta. 1988;177(1):81–7. https://doi.org/10.1016/0009-8981(88)90310-5.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Dowdy RP, Burt J. Effect of intensive, long-term training on copper and iron nutriture in man. Fed Proc. Rockville Pike: Federation of American Societies for Experimental Biology; 1980. p. 786.

  • 53.

    Holloszy JO. Adaptation of skeletal muscle to endurance exercise. Med Sci Sports. 1975;7:155.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Holloszy JO. Biochemical adaptations in muscle effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242(9):2278–82. https://doi.org/10.1016/S0021-9258(18)96046-1.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 55.

    Tumulty D. Physiological characteristics of elite football players. Sport Med. 1993;16(2):80–96. https://doi.org/10.2165/00007256-199316020-00002.

    Article 

    Google Scholar
     

  • 56.

    Lundby C, Jacobs RA. Adaptations of skeletal muscle mitochondria to exercise training. Exp Physiol. 2016;101(1):17–22. https://doi.org/10.1113/EP085319.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 57.

    Groennebaek T, Vissing K. Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function. Front Physiol Front. 2017;8:713.

    Article 

    Google Scholar
     

  • 58.

    Granata C, Jamnick NA, Bishop DJ. Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sport Med. 2018;48(8):1809–28. https://doi.org/10.1007/s40279-018-0936-y.

    Article 

    Google Scholar
     

  • 59.

    Singh A, Deuster PA, Moser PB. Zinc and copper status in women by physical activity and menstrual status. J Sports Med Phys Fitness. 1990;30(1):29–36.

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Mena P, Maynar M, Gutierrez JM, Maynar J, Timon J, Campillo JE. Erythrocyte free radical scavenger enzymes in bicycle professional racers. Adaptation to training. Int J Sports Med. 1991;12(06):563–6. https://doi.org/10.1055/s-2007-1024734.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 61.

    Kies C. Copper bioavailability and metabolism: Springer Science & Business Media; 1989. https://doi.org/10.1007/978-1-4613-0537-8.


    Google Scholar
     

  • 62.

    Vitoux D, Arnaud J, Chappuis P. Are copper, zinc and selenium in erythrocytes valuable biological indexes of nutrition and pathology? J Trace Elem Med Biol. 1999;13(3):113–28. https://doi.org/10.1016/S0946-672X(99)80001-7.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 63.

    Nishito Y, Kambe T. Absorption mechanisms of iron, copper, and zinc: an overview. J Nutr Sci Vitaminol (Tokyo). 2018;64(1):1–7. https://doi.org/10.3177/jnsv.64.1.

    CAS 
    Article 

    Google Scholar
     

  • 64.

    Fischer PW, Giroux A, L’abbe MR. The effect of dietary zinc on intestinal copper absorption. Am J Clin Nutr. 1981;34(9):1670–5. https://doi.org/10.1093/ajcn/34.9.1670.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 65.

    Wapnir RA, Balkman C. Inhibition of copper absorption by zinc. Biol Trace Elem Res. 1991;29(3):193–202. https://doi.org/10.1007/BF03032677.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 66.

    Kiem J, Borberg H, Iyengar GV, Kasperek K, Siegers M, Feinendegen LE, et al. Elemental composition of platelets. Part II. Water content of normal human platelets and measurements of their concentrations of cu, Fe, K, and Zn by neutron activation analysis. Clin Chem. 1979;25(5):705–10. https://doi.org/10.1093/clinchem/25.5.705.

  • 67.

    Abella A, Clerc D, Chalas J, Baret A, Leluc R, Lindenbaum A. Concentrations of superoxide dismutase (copper and manganese), catalase and glutathione peroxidase in red cells, platelets and plasma in patients with rheumatoid polyarthritis. Ann Biol Clin (Paris). 1987;45:152.

    CAS 

    Google Scholar
     

  • 68.

    Laškaj R, Dodig S, Čepelak I, Kuzman I. Superoxide dismutase, copper and zinc concentrations in platelet-rich plasma of pneumonia patients. Ann Clin Biochem. 2009;46(2):123–8. https://doi.org/10.1258/acb.2008.008178.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Similar Articles

    Comments

    Advertisment

    Instagram

    Most Popular

    This Derm’s Favorite Tip For Hydrated Skin Is Absurdly Simple

    Board-certified dermatologist Whitney Bowe, M.D. is one of our favorite skin care experts—so when...

    The Best Way To Eat For Your Gut Type, From A Functional Medicine Specialist

    If there is one diet truth we can all agree on, it's that there...